Acta Cryst. (1995). C51, 2651-2652

# 2-Nitrobenzenesulfenyl Thiocyanate 

R. Alan Howie and James L. Wardell<br>Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE, Scotland

(Received 22 March 1995; accepted 12 July 1995)


#### Abstract

A weak intramolecular $\mathrm{S} \cdots \mathrm{O}$ interaction is present in the title compound, $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} ; \mathrm{S} \cdots \mathrm{O}=2.504$ (7) $\AA$ and $\mathrm{C}-\mathrm{S} \cdots \mathrm{O}=176.8(2)^{\circ}$.


## Comment

Intramolecular non-bonded sulfur-oxygen contacts shorter than the sum of the van der Waals radii ( $3.25 \AA$; Pauling, 1960) have been determined in a number of compounds (Kucsman \& Kapovits, 1985, and references therein). A typical group of such compounds can be represented by the formula $1-X \mathrm{~S}-2-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{n} R_{4-n}$, (1); as well as possessing short $\mathrm{S} \cdots \mathrm{O}$ contacts, the compounds (1) also exhibit $X-\mathrm{S} \cdots \mathrm{O}$ angles close to $180^{\circ}$. This is illustrated by the title compound [(1) $n=4$, $X=\mathrm{SCN}]$, in which $\mathrm{S} \cdots \mathrm{O}=2.504$ (7) $\AA$ and (NC)S$\mathrm{S} \cdots \mathrm{O}=176.8(2)^{\circ}$. The aryl and nitro groups are almost coplanar, the angle between the normals of the planes being $2.9^{\circ}$.

[(1) $n=4, X=S C N]$
The majority of crystallographic studies on compounds of type (1) have involved 2-nitroaryl aryl or alkyl sulfides, i.e. (1) with $X=$ aryl or alkyl. Generally, the $\mathrm{S} \cdots \mathrm{O}$ separations in (1) with $X=$ aryl or alkyl are between 2.62 and $2.72 \AA$ (Howie, Wardell, Zanetti, Cox \& Harrison, 1992; Howie \& Wardell, 1995; Kucsman \& Kapovits, 1985, and references therein); no obvious correlation exists between the $\mathrm{S} \cdots \mathrm{O}$ distance and the electronic effects of the aryl or alkyl substituents.

The $\mathrm{S} \cdots \mathrm{O}$ distances in (1) with $X \neq$ aryl or alkyl are more clearly dependent on $X, e . g$. in (1) with $R=\mathrm{H}$ and $X=\mathrm{Cl}$, the $\mathrm{S} \cdots \mathrm{O}$ distances are 2.379 (5) and 2.408 (5) $\AA$ (Schultz, Hargittai, Kapovits \& Kucsman, 1984), in (1) with $R=\mathrm{H}$ and $X=$ OMe they are 2.458 (2) $\AA$ (Schultz et al., 1984), in (1) with $R=\mathrm{H}$ and $X=\mathrm{SCN}$, i.e. the title compound, the $\mathrm{S} \cdots \mathrm{O}$ distance is 2.504 (7) $\AA$, and in (1) with $R=\mathrm{H}$ and $X=\mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2$ the distances are 2.588 (7) and 2.636 (8) $\AA$ (Ricci \& Bernal, 1970).

In the title compound, the $\mathrm{S} 2-\mathrm{C} 7-\mathrm{N} 2$ valence angle is $178.2(9)^{\circ}$, with bond lengths $\mathrm{S} 2-\mathrm{C} 7$ and $\mathrm{C} 7-\mathrm{N} 2$ of 1.702 (12) and 1.143 (12) $\AA$, respectively; corresponding bond lengths in $\mathrm{Ph}_{3} \mathrm{SnCH}(\mathrm{SCN}) \mathrm{CH}_{2} \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2$ are 1.685 (4) and 1.140 (6) $\AA$ (Howie et al., 1992), in p$\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{SCN} 1.704$ (4) and 1.132 (5) $\AA$ (Isakov, Rider \& Zvonkova, 1976), and in $\mathrm{NCSCH}_{2} \mathrm{SCN} 1.677$ (9) and 1.194 (12) $\AA$ (Konnert \& Britton, 1971). The S1-S2 bond length in the title compound is 2.059 (3) $\AA$, which is comparable with the $\mathrm{S}-\mathrm{S}$ bond length [2.045 (3) $\AA$ ] in $2-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{SSC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2$ (Ricci \& Bernal, 1970).


Fig. 1. The molecular structure showing atom labels and $40 \%$ probability ellipsoids.

## Experimental

The title compound was prepared from $2-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{SCl}$ and KSCN in benzene according to a published procedure (Kharasch, Wehrmeister \& Tigerman, 1947) and was crystallized from ethanol; m.p. 363-364 K.

## Crystal data

$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$
$M_{r}=212.25$
Triclinic
$P \overline{1}$
$a=7.774(16) \AA$
$b=7.973(12) \AA$
$c=8.053(17) \AA$
$\alpha=94.28(15)^{\circ}$
$\beta=109.45(19)^{\circ}$
$\gamma=105.67(13)^{\circ}$
$V=445(2) \AA^{3}$
$Z=2$
$D_{x}=1.584 \mathrm{Mg} \mathrm{m}^{-3}$

## Data collection

Nicolet $P 3$ diffractometer
$\theta / 2 \theta$ scans
Absorption correction:
none
1560 measured reflections
1297 independent reflections
781 observed reflections
$[F>4 \sigma(F)]$
$R_{\text {int }}=0.029$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 14
reflections
$\theta=5.4-11.7^{\circ}$
$\mu=0.54 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Plate
$0.5 \times 0.3 \times 0.04 \mathrm{~mm}$
Yellow

## Refinement

Refinement on $F$
$R=0.070$
$w R=0.071$
$S=1.38$
781 reflections
119 parameters
H atoms riding with
common group $U$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.05 \\
& \Delta \rho_{\max }=0.56 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.35 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

$$
w=1 /\left[\sigma^{2}(F)+0.002568 F^{2}\right]
$$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

| $U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ | $z$ | $U_{\text {eq }}$ |
| S1 | 0.4122 (4) | 0.8415 (3) | 0.1496 (3) | 0.0524 (8) |
| S2 | 0.6223 (4) | 0.8107 (4) | 0.3704 (4) | 0.068 (1) |
| Ol | 0.1709 (10) | 0.8862 (9) | -0.1258 (9) | 0.072 (3) |
| O 2 | -0.0423 (12) | 0.7027 (11) | -0.3606 (10) | 0.091 (3) |
| N1 | 0.0865 (11) | 0.7359 (11) | -0.2140 (10) | 0.051 (3) |
| N2 | 0.4227 (15) | 0.7338 (12) | 0.6082 (12) | 0.081 (4) |
| C 1 | 0.3248 (14) | 0.4720 (11) | 0.0925 (13) | 0.051 (3) |
| C2 | 0.2257 (16) | 0.3082 (13) | -0.0068 (15) | 0.061 (4) |
| C3 | 0.0847 (16) | 0.2801 (14) | -0.1690 (15) | 0.065 (4) |
| C4 | 0.0383 (14) | 0.4224 (13) | -0.2382 (13) | 0.055 (3) |
| C5 | 0.1406 (12) | 0.5878 (11) | -0.1382 (11) | 0.040 (3) |
| C6 | 0.2872 (12) | 0.6198 (11) | 0.0278 (11) | 0.041 (3) |
| C7 | 0.5007 (15) | 0.7626 (12) | 0.5107 (13) | 0.058 (4) |

Table 2. Selected geometric parameters $\left(\AA \AA^{\circ}\right)$

| S2-S1 | $2.059(3)$ | $\mathrm{C} 6-\mathrm{S} 1$ | $1.791(8)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{C} 7-\mathrm{S} 2$ | $1.702(12)$ | $\mathrm{N} 1-\mathrm{O} 1$ | $1.229(9)$ |
| $\mathrm{N} 1-\mathrm{O} 2$ | $1.221(9)$ | $\mathrm{C} 5-\mathrm{N} 1$ | $1.465(11)$ |
| $\mathrm{C} 7-\mathrm{N} 2$ | $1.143(12)$ | $\mathrm{C} 2-\mathrm{C} 1$ | $1.352(13)$ |
| $\mathrm{C} 6-\mathrm{C} 1$ | $1.386(11)$ | $\mathrm{C} 3-\mathrm{C} 2$ | $1.352(14)$ |
| $\mathrm{C} 4-\mathrm{C} 3$ | $1.382(14)$ | $\mathrm{C} 5-\mathrm{C} 4$ | $1.367(12)$ |
| $\mathrm{C} 6-\mathrm{C} 5$ |  |  |  |
| $\mathrm{C} 6-\mathrm{S} 1-\mathrm{S} 2$ | $1.389(11)$ |  | $101.2(3)$ |
| $\mathrm{O} 2-\mathrm{N} 1-\mathrm{O} 1$ | $123.5(3)$ | $\mathrm{C} 7-\mathrm{S} 2-\mathrm{S} 1$ | $118.4(7)$ |
| $\mathrm{C} 5-\mathrm{N} 1-\mathrm{O} 2$ | $\mathrm{C} 5-\mathrm{N} 1-\mathrm{O} 1$ | $120.3(9)$ |  |
| $\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$ | $118.1(8)$ | $\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$ | $119.6(10)$ |
| $\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$ | $122.5(9)$ | $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$ | $116.4(8)$ |
| $\mathrm{C} 6-\mathrm{C} 5-\mathrm{N} 1$ | $117.7(9)$ | $\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$ | $123.6(8)$ |
| $\mathrm{C} 1-\mathrm{C} 6-\mathrm{S} 1$ | $120.0(8)$ | $\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$ | $120.4(6)$ |
| $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$ | $123.3(7)$ | $\mathrm{C} 5-\mathrm{C} 6-\mathrm{S} 1$ | $178.2(9)$ |

Data collection: Nicolet (1980) P3 diffractometer software. Cell refinement: P3 diffractometer software. Data reduction: RDNIC (Howie, 1980). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXS76 (Sheldrick, 1976). Molecular graphics: ORTEX (McArdle, 1994). Software used to prepare material for publication: XPUB (Low, 1980).

[^0]
## References

Howie, R. A. (1980). RDNIC. Data Reduction Program for Nicolet P3 Diffractometer. Univ. of Aberdeen, Scolland.
Howie, R. A. \& Wardell, J. L. (1995). Acta Cryst. C51. Submitted.

Howie, R. A., Wardell, J. L., Zanetti, E., Cox, P. J. \& Doidge-Harrison, S. M. S. V. (1992). J. Organomet. Chem. 431, 27-40.

Isakov, I. V., Rider, E. E. \& Zvonkova, Z. V. (1976). Cryst. Struct. Commun. 5, 95-97.
Kharasch, N., Wehrmeister, H. L. \& Tigerman, H. (1947). J. Am. Chem. Soc. 69, 1612-1615.
Konnert, J. H. \& Britton, D. (1971). Acta Cryst. B27, 781-786.
Kucsman, A. \& Kapovits. I. (1985). Organic Sulfur Chemistry: Theoretical and Experimental Advances, edited by F. Bernardi, I. G. Csizmadia \& A. Mangini, pp. 191-245. Amsterdam: Elsevier.

Low, J. N. (1980). XPUB. Program for the Preparation of Tabular Crystallographic Data. Univ. of Dundee, Scotland.
McArdle, P. (1994). J. Appl. Cryst. 27, 438-439.
Nicolet (1980). Nicolet P3/R3 Data Collection Operator's Manual. Nicolet XRD Corporation, 10061 Bubb Road, Cupertino, California 95014, USA.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., p. 260. Oxford Univ. Press.
Ricci, J. L. \& Bernal, I. (1970). J. Chem. Soc. B, pp. 806-811.
Schultz, G., Hargittai, I., Kapovits, I. \& Kucsman, A. (1984). J. Chem. Soc. Faraday Trans. 2, 80, 1273-1279.
Sheldrick. G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
Sheldrick. G. M. (1985). SHELX86. Program for the Solution of Crystal Structures. Univ. of Göttingen. Germany.

Acta Cryst. (1995). C51, 2652-2654

# 3-Methylphthalic Anhydride 

Gabriele Bocelli and Andrea Cantoni
Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze, I-43100 Parma, Italy
(Received 3 May 1995; accepted 29 June 1995)


#### Abstract

Molecules of the title compound, $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{3}$, are not wholly planar, having a dihedral angle of $2.0(1)^{\circ}$ between the two ring planes. The fused heterocyclic five-membered ring causes significant distortions in the bond angles within the benzene ring. The methyl group is displaced by 0.06 (1) $\AA$ from the least-squares plane through the aromatic ring.


## Comment

A large number of derivatives of the title compound have been reported as a result of interest either in their use for the synthesis of epoxy resins and in the manufacture of ceramic and powder metallurgical products (Bayer \& Nagl, 1993), or because they form chargetransfer complexes with a number of polycyclic compounds (Wilkerson, Chodak \& Strouse, 1975; Baumer \& Starodub, 1984; Bulgarovskaya, Zavodnik, Bel'skii \& Vozzhennikov, 1989). In view of the potential utilization


[^0]:    Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: CF1016). Copies may be obtained through The Managing Editor, International Union of Crystallography. 5 Abbey Square, Chester CH1 2HU, England.

